Canonical Heights on the Jacobians of Curves of Genus 2 and the Infinite Descent
نویسندگان
چکیده
We give an algorithm to compute the canonical height on a Jacobian of a curve of genus 2. The computations involve only working with the Kummer surface and so lengthy computations with divisors in the Jacobian are avoided. We use this height algorithm to give an algorithm to perform the “infinite descent” stage of computing the Mordell-Weil group. This last stage is performed by a lattice enlarging procedure.
منابع مشابه
The Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7
Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...
متن کاملSolving Diophantine Problems on Curves via Descent on the Jacobian
The theory of Jacobians of curves has largely been developed in a vacuum, with little computational counterpart to the abstract theory. A recent development has been the explicit construction of Jacobians & formal groups, and workable methods of descent [6],[7] to find the rank. We suggest that the following plan will provide a powerful tool for finding the set of Q-rational points C(Q) on a cu...
متن کاملDescent via (3, 3)-isogeny on Jacobians of Genus 2 Curves
We give parametrisation of curves C of genus 2 with a maximal isotropic (Z/3) in J [3], where J is the Jacobian variety of C, and develop the theory required to perform descent via (3, 3)-isogeny. We apply this to several examples, where it can shown that non-reducible Jacobians have nontrivial 3-part of the Tate-Shafarevich group.
متن کاملDescent via (5, 5)-isogeny on Jacobians of Genus 2 Curves
We describe a family of curves C of genus 2 with a maximal isotropic (Z/5) in J [5], where J is the Jacobian variety of C, and develop the theory required to perform descent via (5, 5)isogeny. We apply this to several examples, where it can shown that non-reducible Jacobians have nontrivial 5-part of the Tate-Shafarevich group.
متن کاملComputing Néron-tate Heights of Points on Hyperelliptic Jacobians
It was shown by Faltings ([Fal84]) and Hriljac ([Hri85]) that the Néron-Tate height of a point on the Jacobian of a curve can be expressed as the self-intersection of a corresponding divisor on a regular model of the curve. We make this explicit and use it to give an algorithm for computing Néron-Tate heights on Jacobians of hyperelliptic curves. To demonstrate the practicality of our algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997